Fragen zum 1. Chemiebonustest

- 1. a) Was wissen Sie über die Handwerkskünste? Was heißt empirisch?
 - b) Was machten die Alchemisten? Welchen Versuch machte Hennig Brand?
 - c) Was wissen Sie über die Phlogistontheorie?
 - d) Wer war der wichtigste Vertreter der Modernen Chemie und warum?
 - e) Wie lautet das Gesetz der Erhaltung der Masse?
- 2. a) Womit beschäftigt sich die Physik?
 - b) Womit beschäftigt sich die Chemie und was sind deren Ziele?
 - c) Welche Ereignisse sind chemisch welche physikalisch:

Eine Fensterscheibe beschlägt sich :	
Milch wird sauer:	
Glühbirne wird eingeschaltet:	
Kohlendioxid entweicht aus Mineralflasche:	
Das Blatt verfärbt sich im Herbst:	

- 3. a) Was sind homogene und was sind heterogene Stoffe?
 - b) Was versteht man unter einem Gemenge, einer Emulsion oder einer Suspension?
 - c) Nennen Sie einige Trennmethoden für heterogene Stoffe und beschreiben Sie diese
 - d) Beschreiben sie eine Sedimanetation, eine Filtration und eine Extraktion
 - e) Erklären sie genauer die Destillation und die Chromatographie
 - f) Nennen Sie Trennmethoden für homogene Stoffe
- 4. a) Beschreiben Sie die drei verschiedenen Aggregatzustände ausführlich
 - b) Nennen sie die Aggregatzustände von Wasser und erklären Sie den Schmelz- und Siedepunkt
 - c) Was versteht man unter der Dichteanomalie von Wasser?
 - d) Was entdeckte Robert Brown?
- 5. a) Welche Regeln entwickelte John Dalton, die heute noch gelten was wurde aber erneuert?
 - b) Durch welche Gesetze kam er zu seinen Theorien?
 - c) Welches Atommodell entwickelte John Dalton?
- 6. a) Wer arbeitete mit Kathodenstrahlen?
 - b) Zeichnen Sie die Ablenkung der Strahlen in einem magnetischen Feld
 - c) Was wurde durch diese Kathodenstrahlen entdeckt?
 - d) Was sind Kanalstrahlen und was entdeckte man?
 - e) Welches Atommodell entwickelte J.J. Thomson? Skizzieren Sie sein Modell
- 7. a) Durch welchen Versuch wurde Rutherford bekannt?
 - b) Welches Atommodell erstellte er? Erklären Sie es
 - c) Skizzieren Sie sein Modell und geben sie den Teilchen Namen, Ladung und Masse
- 8 a) Was entwickelte Niels Bohr?
 - b) Durch welche Beobachtungen kam er zu seinen Ideen? Skizzieren Sie sein Modell
 - c) Was passiert, wenn Licht durch ein Prisma fällt?
 - d) Was passiert wenn ein angeregtes Gas durch ein Prisma fällt?
 - e) Was absorbiert jedes Atom/Molekül und was emittiert es?
 - f) Wie nennt man die Methode zur Bestimmung der Stoffe?
- 9. a) Wer gilt als Entdecker des Periodensystems erzählen Sie kurz von seinem System
 - b) Was sind Triaden?
 - c) Was sind Gruppen und wo befinden sie sich im PSE und wie nennt man die Zeilen im PSE?
 - d) Wo befinden sich die Edelgase im PSE was zeichnet sie aus?
 - e) Wo befinden sich die Metalle, Halbmetalle und Nichtmetalle im PSE
 - f) Was steigt im PSE von links nach rechts, was steigt von oben nach unten?

- 10. a) Welche Indexzahlen kann ein Element haben?
 - b) Nennen Sie das Symbol für Stickstoff und schreiben Sie die fixen Indexzahlen an
 - c) Woraus setzt sich die Massezahl zusammen?
 - d) Welchen anderen Namen gibt es für die Ordnungszahl?
 - e) Wie sind die Elemente Wasserstoff und Helium entstanden?
 - f) Beschreiben Sie das Kohlenstoff- und Sauerstoffbrennen
- 11. a) Was ist ein Ion und was ist ein Isotop (erkläre dies anhand von Kohlenstoff)
 - b) Welche Teilchen befinden sich im Kern?
 - c) Bestimmen Sie mit dem PSE: die Ordnungzahl, Atommasse, Zahl der Protonen, Neutronen, Elektronen und Valenzelektronen für die folgenden Elemente: Be, F, Al, Mg^{2+,} Fe, S²⁻ und Se. d) Welche Elementarteilchen enthalten folgende Nuklide: ¹⁴₇N, ⁴⁰₂₀Ca, ⁶⁰₂₇Co und ²³⁸₉₂U. e) Um welche Elemente handelt es sich ¹⁹₉ ?, ²⁷₁₃ ?, ²³₁₁ ?, ¹⁴₆ ? und ³⁵₁₇?.

 - f) Welche Elementarteilchen sind für die chemische Bindung wichtig?
- 12. a) Erklären Sie den Begriff Mol und molare Masse welche Formel gibt den Zusammenhang?
 - b) Wie groß ist die Avogadrosche Zahl?
 - c) Berechne die molare Masse von S₈, CH₄, C₆H₁₂O₆, CaCO₃, Al₂(SO₄)₃ und Schwefelsäure
 - d) Wieviel Mol sind in 18 g Kohlendioxid, 32 kg Salpetersäure und 4,4 g Kohlensäure?
 - e) Welche Massen haben: 0,1 Mol Kochsalz, 2 Mol Wasser und 1,5 Mol Glucose?.
 - f) Wieviele Atome/Moleküle befinden sich in 50g Phosphorsäure und 83 g Kalilauge?
- 13. a) Was ist eine Welle, eine Schwingung und eine Frequenz (nennen Sie die Einheit)?
 - b) Beschreiben Sie eine elektromagnetische Welle nennen Sie verschiedene und geben Sie deren Frequenz, Wellenlänge und Energie an
 - c) Warum sind elektromagnetische Wellen in der Chemie wichtig?
 - d) Welche Forscher beschäftigten sich mit diesen Wellen?
- 14. a) Wer entwickelte das wellenmechanische Atommodell?
 - b) Wie nennt man die Raumbereiche eines Elektrons und mit welchen Quantenzahlen kann das Elektron beschrieben werden?
 - c) Beschreiben sie die Unterschalen der Schale n=4 eines Atoms
 - d) Welche Elemente haben vollbesetzte 4p -Unterschalen?
 - e) Welche Metalle der 4.Periode haben gepaarte Elektronen?
 - f) Welche Nichtmetalle der 2.Periode haben ein ungepaartes Elektron?
 - g) Wie viele Elektronen können gemeinsam die folgenden Quantenzahlen haben?
 - 1) n = 5
 - 2) n = 2, l = 2
 - 3) n = 2, l = 0
 - 4) n = 4, l = 2, m = 3
 - 5) n = 4, l = 3, m = -2
 - 6) n = 3, l = 1
- 15. a) Skizzieren Sie das Energiediagramm für die Elektronenkonfiguration von 28Ni und Aluminum
 - b) Notieren Sie die Elektronenkonfiguration nach der Hochzahl: Neon und Ba²⁺
 - c) Notieren Sie nach der Kästchenmethode: Selen und Natrium
 - d) Notieren Sie die Konfigurationen mit dem Edelgas: 56Ba, 82Pb, 39Y, 54 Xe.
 - e) Geben sie die Quantenzahlen für jedes Elektron eines Aluminium und Sauerstoffatoms an
- 16. a) Was sagt die Regel von HUND?
 - b) Welche drei Regeln müssen bei der Elektronenkonfiguration beachtet werden
 - c) Was versteht man unter Edelgaskonfiguration? Nennen sie ein Element mit dieser Edelgaskonfiguaration und geben sie auch deren Elektronenkonfiguration an.

- d) Welche zwei Gruppen im PSE sind sehr reaktiv?
- 17) a) Was versteht man unter der Ionisierungsenergie und der Elektronenaffinität?
 - b) Welches Element hat in seiner Periode die höchste Ionisierungsenergie?
 - c) Wie verändern sich die Atomradien und die Ionisierungsenergie im PSE von oben nach unten und von links nach rechts?
 - d) Kann ich einem Na-Atom oder einem Brom-Atom ein Elektron leichter wegnehmen?
 - e) Schreiben Sie nach der Lewis-Formel folgende Elemente an: O, B, N, Li, C und He.
- 18) a) Beschreiben Sie genau die Atombindung geben Sie Beispiele
 - b) Bestimmen Sie die Summen- und Strukturformeln von Ammoniak, Salpeter-, Salz- und Phosphorsäure und schwefeligen Säure
 - c) Bestimmen Sie die Strukturformeln von NOCl, N₂H₂, PCl₃, H₂CO₃, SF₄, SO₃, CS₂, C₂H₂, HBr (mit bindenden und nichtbindenden Elektronenpaaren)
 - d) Erstellen Sie die Strukturformeln für folgende Moleküle und geben Sie das notwendige Modell an (Lewis, Hybridisierung, Delokalisierung oder Komplexbindung): O₃, SO₄²⁻, ClO₄⁻, PO₄³⁻, PCl₃, CO₃²⁻, SF₆, H₂S, POCl₃, SCl₂, PBr₅, SO₂, SeO₃
 - e) Schreiben Sie für SO₃ und O₃ mehrere mesomere Formen an mit Angabe der Theorien
- 19) a) Geben sie die Raumstruktur nach der VSEPR-Theorie an (mit Bindungswinkel und Skizze): CH₄, HgCl₂, SF₆, H₂O, NH₃, BrF₅, SF₄, IF₄ H₂CO, HCN und XeF₂
 - b) Erstellen Sie die Strukturformeln, benennen Sie den räumlichen Aufbau und geben Sie die bindenden und nichtnindenden Elektronenpaare an: C₂H₂, NOCl, HCN, CCl₄, PCl₃ und CSCl₂.
 - c) Bestimmen Sie bei folgenden Stoffen, ob sie polar oder unpolar sind: CCl₄, CH₃F, I₂, SO₂, HF, CS₂, CO₂, H₂O, NH₃ und CH₄
- 20) a) Kennen Sie auch Atomgitter nennen und beschreiben Sie diese genau
 - b) Bei welchen der folgenden Moleküle sind H-Brücken möglich: HF, CH₄, NH₃, CO₂, SO₂, H₂ und H₂O (zeichnen Sie eine Skizze und wenn H-Brücken auftreten mit den Ladungen).
 - c) Erlären Sie mit einem Beispiel wie eine Komplexbindung entsteht
 - d) Ordnen Sie beide Gruppen nach steigender Stärke der Van der Waals Bindung: Cl₂, I₂, B₂, F₂ und C₃H₈, C₄₀H₈₂, C₈H₁₈, CH₄. Erklären Sie diese Bindung

21) a) Ordnen sie folgende Metalle/Nichtmetalle in ihre Hauptgruppe, geben sie abgebende und aufnehmende Elektronen an, das Ion, Bindungsverhältnis Metall/Nichtmetall und die Formel:

Metall	Hauptgr.	Abgebende Elektronen	Nicht- metall	Hauptgr.	aufnehmende Elektronen	Ladung Nichtmetallion	Verhältnis	Formel
Al			Cl					
Sb			О					
Cs			Se					
В			F					
Ge			P					

b)) '	Vervo	llständige	en Sie i	tolgende	Gleichungen:
----	-----	-------	------------	----------	----------	--------------

Ba ²⁺ + O ²	
$_{}$ Zn $^{2+}$ + $_{}$ Br $^{-}$	>
$\frac{1}{1}$ Mg $^{2+}$ + $\frac{1}{1}$ F	>
CaCl ₂ >	
Na_2S >	
AlF ₃ >	+

- c) Welche Elektronenkonfiguration streben die Ionen an?
- 22) a) Geben Sie den folgenden Formeln deutsche Namen: H₃PO₄, N₂O, H₂SO₄, CH₄, CO, HCl, OH⁻,

- SO_3^{2-} , NH_4Cl , Sn^{4+} , CN^- , N_2O_4 , P_4 , $Ba(NO_3)_2$, CO_3^{2-} , H_2S , Br_2 , Pb^{2+} und NH_3
- b) Welche Ionen bilden Natriumoxid, Magnesiumfluorid, Aluminiumfluorid, Blei(II)oxid
- c) Zeichnen Sie ein Na-Atom und ein Cl-Atom (mit seinen Schalen und Elektronen) und dann beide Ionen im richtigen Größenverhältnis und dann das Ionengitter
- d) Notieren Sie die Elektronenkonfiguration folgender Ionen: Na⁺, Al³⁺, Cl⁻,Cs⁺, Cd²⁺,Co²⁺,Mg²⁺
- 23) a) Beschreiben Sie genau die Ionenbindung geben Sie Beispiele
 - b) Was versteht man unter Anionen und Kationen
 - c) Schreibe bei folgenden Elementen ihre Ionen an und benenne sie: P, Fe, Na, S, Al und Mg
 - d) Zeichnen Sie wie aus den gasförmigen Ausgangsatomen ein NaCl Salzkristall entsteht und geben schreiben sie die fünf Schritte an (wo erfolgt der Energiegewinn)
 - e) Zeichnen Sie eine Hydrathülle um ein Calciumion und ein Sulfidion
 - f) Erstellen Sie die Kathoden- und Anodenreaktion für die Elektrolyse einer Natriumchlorid schmelze (mit Skizze der Elektrolyse)
- 24) a) Zeichnen sie eine Skizze einer metallischen Bindung wer hält sie zusammen?
 - b) Warum sind Metalle schwarz und welche Eigenschaften haben Metalle?
 - c) Ionen und Metalle und auch Atome bilden Gitter beschreiben Sie die verschiedenen Gitter
 - d) Was heißt spröde, duktil, gediegen, Legierung und Erz
 - e) Wie kommen die Metalle in der Natur vor?
- 25) a) Warum gibt es in der Natur radioaktive Stoffe und wer hat diese beschrieben?
 - b) Welche radioaktive Strahlen kennen Sie und welche Wellenlänge und Frequenz haben sie
 - c) Ein Element emittiert radioaktive Stahlen. Dabei verringert sich die Massenzahl des Elements um 4. Welche Strahlen sind es beschreiben Sie diese genau (Formel)
 - d) Ein Stoff sendet radioaktive Strahlen aus, dabei verwandeln sich Neutronen in Protonen. Welche Strahlen sind es? Beschreiben Sie sie genau (Formel)
 - e) Ein Element emittiert radioaktive Stahlen, sie werden im Magnetfeld nicht abgelenkt. Welche Strahlen sind es? Beschreiben Sie diese genau
- 26) a) Was versteht man unter der Halbwertszeit?
 - b) Ein radioaktives Element emittiert alpha Strahlen mit einer Halbwertszeit von 3 Tagen. Wie viel Prozent sind nach 9 Tagen noch vorhanden und welches neue Element entsteht dabei?
 - c) Ein radioaktives Element zerfällt mit einer Halbwertszeit von τ = 7 Minuten. Wie viel ist nach 21 Minuten zerfallen und wie viel ist nach 42 Minuten zerfallen?
 - d) Ein radioaktives Element zerfällt mit einer Halbwertszeit von τ = 5 Monaten Wie viel Substanz ist nach 25 Monaten noch aktiv? Wie viel noch nach 35 Monaten?
 - e) Wir beobachten ein bestimmtes radioaktives Element und stellen fest, dass sich nach 32 Minuten bereits 75% der ursprünglichen Masse in ein anderes Element verwandelt haben. Wie groß ist die Halbwertszeit?
 - f) Nach 6400 Jahren sind nur noch 6,25% der ursprünglichen Substanz vorhanden. Wie groß ist die Halbwertszeit ?
 - g) In 9 Tagen sind 87,5% eines gegebenen Stoffes zerfallen. Wie groß ist die Halbwertszeit?
 - h) Beschreiben Sie die Altersbestimmung mit der Radiocarbonmethode